diff --git a/utils/inspector.py b/utils/inspector.py index aa2c0e5..6738bef 100644 --- a/utils/inspector.py +++ b/utils/inspector.py @@ -13,7 +13,7 @@ def get_hashes_in_dir(dir_path: str) -> list: filepath = os.path.join(subdir, file) with open(filepath, 'rb') as f: filehash = hashlib.sha256(f.read()).hexdigest() - hash_list.append({ 'file': filepath, 'sha256 hash': filehash}) + hash_list.append({ 'filepath': filepath, 'filename': file, 'sha256 hash': filehash}) return hash_list @@ -24,7 +24,7 @@ def hash_submissions(submissions_dir_path: str): csv_file_name = f'{submissions_dir_name}_file_hashes_{datetime.now().strftime("%Y%m%d-%H%M%S")}.csv' csv_file_path = os.path.join(CSV_DIR, csv_file_name) with open(csv_file_path, 'w', newline='') as csvfile: # Open the output CSV file for writing - fieldnames = ['Student ID', 'file', 'sha256 hash'] + fieldnames = ['Student ID', 'filepath', 'filename', 'sha256 hash'] writer = csv.DictWriter(csvfile, fieldnames=fieldnames) writer.writeheader() @@ -37,7 +37,7 @@ def hash_submissions(submissions_dir_path: str): return csv_file_path def get_suspicious_hashes(df: pd.DataFrame) -> list: - drop_columns = ['file'] + drop_columns = ['filepath', 'filename'] df = df.drop(columns=drop_columns).sort_values('sha256 hash') # clear not needed colums & sort by hash duplicate_hash = df.loc[df.duplicated(subset=['sha256 hash'], keep=False), :] # all files with duplicate hash - incl. files from the same student id